Generalized increasing - decreasing functions and generalized convexity of the compound functions 遞減函數(shù)與復(fù)合函數(shù)的廣義凸性
Quasiconvex functions and various generalized convexity of functions play important roles in mathematical programming 擬凸函數(shù)及函數(shù)的各種廣義凸性,在數(shù)學(xué)規(guī)劃中起著重要作用。
Under the assuption of - generalized convexity , relative interior is introduced , and a farkas - minkowski type alternative theorem is proved 在-廣義錐凸性假設(shè)下,引進(jìn)相對內(nèi)部,證明了farkas - minkowski型的擇一性定理。
This paper discusses four sufficient optimality conditions for nonsmooth continuous - time nonliear multiobjective optimization problems under generalized convexity assumptions 在廣義凸性假設(shè)下,討論了非光滑連續(xù)時間非線性多目標(biāo)優(yōu)化問題的四個最優(yōu)性充分條件。
Abstract : using the definitions of semi - locally star shaped set and generalized convexity for vector functions . we discuss the existence of efficient solutions for generalized multiobjective programming 文摘:本文利用1中的半局部星狀集和向量函數(shù)的廣義凸性,討論了一類廣義多目標(biāo)規(guī)劃有效解的存在性。